skip to main content


Search for: All records

Creators/Authors contains: "D’Orazio, D"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Abstract Among the potential milliHz gravitational wave (GW) sources for the upcoming space-based interferometer LISA are extreme- or intermediate-mass ratio inspirals (EMRI/IMRIs). These events involve the coalescence of supermassive black holes in the mass range 105M⊙ ≲ M ≲ 107M⊙ with companion BHs of much lower masses. A subset of E/IMRIs are expected to occur in the accretion discs of active galactic nuclei (AGN), where torques exerted by the disc can interfere with the inspiral and cause a phase shift in the GW waveform. Here we use a suite of two-dimensional hydrodynamical simulations with the moving-mesh code DISCO to present a systematic study of disc torques. We measure torques on an inspiraling BH and compute the corresponding waveform deviations as a function of the binary mass ratio q ≡ M2/M1, the disc viscosity (α), and gas temperature (or equivalently Mach number; $\mathcal {M}$). We find that the absolute value of the gas torques is within an order of magnitude of previously determined planetary migration torques, but their precise value and sign depends non-trivially on the combination of these parameters. The gas imprint is detectable by LISA for binaries embedded in AGN discs with surface densities above $\Sigma _0\ge 10^{4-6} \rm \, g cm^{-2}$, depending on q, α and $\mathcal {M}$. Deviations are most pronounced in discs with higher viscosities, and for E/IMRIs detected at frequencies where LISA is most sensitive. Torques in colder discs exhibit a noticeable dependence on the GW-driven inspiral rate as well as strong fluctuations at late stages of the inspiral. Our results further suggest that LISA may be able to place constraints on AGN disc parameters and the physics of disc-satellite interaction. 
    more » « less
  2. ABSTRACT We present and analyse a new tidal disruption event (TDE), AT2017eqx at redshift z = 0.1089, discovered by Pan-STARRS and ATLAS. The position of the transient is consistent with the nucleus of its host galaxy; the spectrum shows a persistent blackbody temperature T ≳ 20 000 K with broad H i and He ii emission; and it peaks at a blackbody luminosity of L ≈ 1044 erg s−1. The lines are initially centred at zero velocity, but by 100 d, the H i lines disappear while the He ii develops a blueshift of ≳ 5000 km s−1. Both the early- and late-time morphologies have been seen in other TDEs, but the complete transition between them is unprecedented. The evolution can be explained by combining an extended atmosphere, undergoing slow contraction, with a wind in the polar direction becoming visible at late times. Our observations confirm that a lack of hydrogen a TDE spectrum does not indicate a stripped star, while the proposed model implies that much of the diversity in TDEs may be due to the observer viewing angle. Modelling the light curve suggests AT2017eqx resulted from the complete disruption of a solar-mass star by a black hole of ∼106.3 M⊙. The host is another Balmer-strong absorption galaxy, though fainter and less centrally concentrated than most TDE hosts. Radio limits rule out a relativistic jet, while X-ray limits at 500 d are among the deepest for a TDE at this phase. 
    more » « less